Two euAGAMOUS Genes Control C-Function in Medicago truncatula
نویسندگان
چکیده
C-function MADS-box transcription factors belong to the AGAMOUS (AG) lineage and specify both stamen and carpel identity and floral meristem determinacy. In core eudicots, the AG lineage is further divided into two branches, the euAG and PLE lineages. Functional analyses across flowering plants strongly support the idea that duplicated AG lineage genes have different degrees of subfunctionalization of the C-function. The legume Medicago truncatula contains three C-lineage genes in its genome: two euAG genes (MtAGa and MtAGb) and one PLENA-like gene (MtSHP). This species is therefore a good experimental system to study the effects of gene duplication within the AG subfamily. We have studied the respective functions of each euAG genes in M. truncatula employing expression analyses and reverse genetic approaches. Our results show that the M. truncatula euAG- and PLENA-like genes are an example of subfunctionalization as a result of a change in expression pattern. MtAGa and MtAGb are the only genes showing a full C-function activity, concomitant with their ancestral expression profile, early in the floral meristem, and in the third and fourth floral whorls during floral development. In contrast, MtSHP expression appears late during floral development suggesting it does not contribute significantly to the C-function. Furthermore, the redundant MtAGa and MtAGb paralogs have been retained which provides the overall dosage required to specify the C-function in M. truncatula.
منابع مشابه
Differential regulation of a family of apyrase genes from Medicago truncatula.
Four putative apyrase genes were identified from the model legume Medicago truncatula. Two of the genes identified from M. truncatula (Mtapy1 and Mtapy4) are expressed in roots and are inducible within 3 h after inoculation with Sinorhizobium meliloti. The level of mRNA expression of the other two putative apyrases, Mtapy2 and Mtapy3, was unaffected by rhizobial inoculation. Screening of a bact...
متن کاملFour genes of Medicago truncatula controlling components of a nod factor transduction pathway.
Rhizobium nodulation (Nod) factors are lipo-chitooligosaccharides that act as symbiotic signals, eliciting several key developmental responses in the roots of legume hosts. Using nodulation-defective mutants of Medicago truncatula, we have started to dissect the genetic control of Nod factor transduction. Mutants in four genes (DMI1, DMI2, DMI3, and NSP) were pleiotropically affected in Nod fac...
متن کاملRoot developmental programs shape the Medicago truncatula nodule meristem.
Nodules on the roots of legume plants host nitrogen-fixing Rhizobium bacteria. Several lines of evidence indicate that nodules are evolutionarily related to roots. We determined whether developmental control of the Medicago truncatula nodule meristem bears resemblance to that in root meristems through analyses of root meristem-expressed PLETHORA genes. In nodules, MtPLETHORA 1 and 2 are prefere...
متن کاملComparative genomic sequence and expression analyses of Medicago truncatula and alfalfa subspecies falcata COLD-ACCLIMATION-SPECIFIC genes.
In Arabidopsis (Arabidopsis thaliana) the low-temperature induction of genes encoding the C-REPEAT BINDING FACTOR (CBF) transcriptional activators is a key step in cold acclimation. CBFs in turn activate a battery of downstream genes known as the CBF regulon, which collectively act to increase tolerance to low temperatures. Fundamental questions are: What determines the size and scope of the CB...
متن کاملGenomic and Coexpression Analyses Predict Multiple Genes Involved in Triterpene Saponin Biosynthesis in Medicago truncatula C W
Saponins, an important group of bioactive plant natural products, are glycosides of triterpenoid or steroidal aglycones (sapogenins). Saponins possess many biological activities, including conferring potential health benefits for humans. However, most of the steps specific for the biosynthesis of triterpene saponins remain uncharacterized at the molecular level. Here, we use comprehensive gene ...
متن کامل